Monday, July 6, 2009

Perintah di dalam DOS

DAFTAR PERINTAH DI DALAM DOS

Di bawah ini adalah arti kata perintah di dalam DOS, para master IT mungkin sudah tidak asing dengan kata-kata dibawah ini :


ADDUSERS - Memasukkan/ menambah user ke/dari file CSV.
ARP - Address Resolution Protocol
ASSOC Change - file extension associations
ASSOCIAT - One step file association
AT Schedule - Perintah untuk membuat shedule program (utk dijalankan kemudian waktu)
ATTRIB - Mengganti atribut file
BOOTCFG - Edit boot setting windows
BROWSTAT - Mencari info domain,browser dan PDC
CACLS - Mengganti/mengubah file permissions
CALL - Memanggil sebuah program batch
CD - Memindahkan ke sebuah folder tertentu.
CHANGE - Mengubah Properties pada Terminal Server
CHKDSK - Memeriksa dan memperbaiki file system
CHKNTFS - Memeriksa NTFS file system
CHOICE - Menerima input keyboard ke dalam sebuah batch file
CIPHER - Encrypt-Decrypt files/folders
CleanMgr - Membersihkan secara otomatis Temporary files, recycle bin
CLEARMEM - Membersihkan memory
CLIP - meng-Copy STDIN ke Windows clipboard.
CLS - Membersihkan layar CMD
CLUSTER - Windows Clustering
CMD - Membuka layar CMD/ command prompt
COLOR - Mengganti warna pada window CMD
COMP - Membandingkan isi dari 2 atau lebih file
COMPACT - kompres file/folder di dalam partisi NTFS
COMPRESS - kompres file individu di dalam partisi NTFS
CON2PRT - Connect atau disconnect sebuah Printer
CONVERT - Convert FAT drive menjadi NTFS.
COPY - Copy 1 atau lebih file ke lokasi tertentu
CSVDE - Import/Export Active Directory data
DATE - Menampilkan/mengatur tanggal
Dcomcnfg - DCOM Configuration Utility
DEFRAG - Defragment hard drive
DEL - Menghapus 1 atau lebih file
DELPROF - Menghapus User Profile NT
DELTREE - Menghapus sebuah folder beserta subfolder
DevCon - Device Manager Command Line Utility
DIR - Menampilkan daftar file/folder dari sebuah drive
DIRUSE - Menampilkan disk usage/kapasitas disk
DISKCOMP - Membandingkan isi dari 2 buah floppy disk
DISKCOPY - Copy isi dari sebuah floppy disk ke floppy disk lainnya
DNSSTAT - DNS Statistics
DOSKEY - Mengedit command line,recall commands,dan create macros
DSADD - Menambah user (computer, group..) ke dalam active directory
DSQUERY - Menambah item ke dalam active directory
DSMOD - Modify user (computer, group..) di dalam active directory
ECHO - Menampilkan message pada monitor
ERASE - Menghapus satu atau lebih file
EXIT - keluar dari window CMD
EXPAND - Uncompress file
EXTRACT - Uncompress CAB files
FC - Membandingkan 2 buah file
FDISK - Disk Format dan partition
FIND - Mencari sebuah text string di dalam sebuah file
FINDSTR - Mencari strings di dalam files
FOR /F -Loop command: untuk beberapa files sekaligus
FOR - Loop command: all options Files, Directory, List
FORFILES - Batch process multiple files
FORMAT - Memformat sebuah disk
FREEDISK - Menampilkan free disk space (dalam bytes)
FSUTIL - File and Volume utilities
FTP - File Transfer Protocol
FTYPE - Menampilkan/mengubah file types yg digunakan dalam file extension
GLOBAL - Menampilkan daftar anggota dalam global groups
GOTO - Mengarahkan sebuah program batch untuk melompat ke labelled line
HELP - Online Help
HFNETCHK - Network Security Hotfix Checker
IF - Conditionally perform a command (perintah bersyarat)
IPCONFIG - Configure IP
KILL - Menghapus program dari memory
LABEL - Memberi/mengubah label disk
LOCAL - Menampilkan daftar anggota local groups
LOGEVENT - Menulis text ke dalam NT event viewer.
LOGOFF - Keluar dari system / Mengeluarkan user dari system
LOGTIME - mencatat tanggal dan waktu dalam sebuah file
MAPISEND - Mengirim e-mail dari command line
MEM - Menampilkan memory usage
MD - Create new folders
MODE - Configure a system device
MOUNTVOL - Mengatur Mount point dalam sebuah volume
MOVE - Memindahkan file dari sebuah folder ke folder lain
MOVEUSER - Menindahkan user dari sebuah domain ke domain lain
MSG - Mengirim message
MSIEXEC - Microsoft Windows Installer
MSINFO - Windows NT diagnostics
MSTSC - Terminal Server Connection (Remote Desktop Protocol)
MUNGE - Mencari dan Menganti text di dalam sebuah file (find & replace)
MV - Meng-copy file yang sedang/sementara digunakan
NET - Mengatur network resources
NETDOM - Domain Manager
NETSH - Configure network protocols
NETSVC - Command-line Service Controller
NBTSTAT - Menampilkan networking statistics (NetBIOS over TCP/IP)
NETSTAT - Menampilkan networking statistics (TCP/IP)
NOW - Menampilkan current Date and Time
NSLOOKUP - Name server lookup
NTBACKUP - Backup folders
NTRIGHTS - Edit user account rights (wilayah akses yg diizinkan oleh admin)
PATH - Menampilkan atau mengatur search path untuk executable files
PATHPING - Melacak route plus network latency dan packet loss
PAUSE - Menahan proses sebuah batch file and menampilkan message
PERMS - Menampilkan permissions (wilayah akses) user
PERFMON - Performance Monitor
PING - Menguji (test) network connection
POPD - Restore previous value dari sebuah directory yang di-save oleh PUSHD
PORTQRY - Menampilkan status ports dan service
PRINT - Print text file
PRNCNFG - Menampilkan, mengatur, atau mengubah nama printer
PRNMNGR - Menampilkan, menghapus, atau menambah daftar printer; set default printer
PROMPT - Mengubah command prompt
PsExec - Menjalankan proses jarak jauh (remote)
PsFile - Menunjukkan file2 yang dibuka dari jarak jauh
PsGetSid - Menampilkan SID sebuah computer atau user
PsInfo - Menampilkan informasi dari sebuah system
PsKill - Menghentikan proses melalui process ID
PsList - Menampilkan detail informasi dari sebuah proses
PsLoggedOn - Who's logged on (mengecek secara lokal atau melalui resource sharing)
PsLogList - Event log records
PsPasswd - Mengubah account password
PsService - Menampilkan dan mengubah services
PsShutdown - Shutdown atau reboot computer
PsSuspend - Suspend/menahan proces
PUSHD - Menyimpan/Save dan mengganti current directory
QGREP - Mencari kata/kalimat di dalam file yg sesuai dgn pola/line yg ditentukan.
RASDIAL - Mengatur RAS connections
RASPHONE - Mengatur RAS connections
RECOVER - Memulihkan/Recover damaged file dari sebuah disk defective (rusak).
REG - Membaca, mengatur, atau menghapus registry keys dan values
REGEDIT - Mengimport/mengeksport registry settings
REGSVR32 - Register/unregister file DLL atau ocx
REGINI - Mengubah Registry Permissions
REM - Merekam/mencatat comments (remarks) di dalam sebuah batch file
REN - mengubah nama file
REPLACE - Mengganti/Replace atau meng-update sebuah file dengan file line
RD - Delete folder
RDISK - Create Recovery Disk
RMTSHARE - Share folder atau printer
ROUTE - Memanipulasi network routing tables
RUNAS - Menjalankan sebuah program dgn menggunakan user account lain.
RUNDLL32 - Menjalankan sebuah DLL command (add/remove print connections)
SC - Service Control
SCHTASKS - Create or Edit Scheduled Tasks
SCLIST - Display NT Services
ScriptIt - Control GUI applications
SET - Display, set, atau remove environment variables
SETX - Set environment variables secara permanent
SHARE - Mendaftar atau edit sebuah file share atau print share
SHORTCUT - Create windows shortcut (.LNK file)
SHOWGRPS - Menampilkan daftar NT Workgroups atau user yang telah joined
SHOWMBRS - Menampilkan daftar Users yg merupakan member dari sebuah Workgroup
SHUTDOWN - Shutdown computer
SLEEP - Menunggu selama beberapa saat
SOON - Menjadwal(schedule) sebuah command untuk beberapa waktu kemudian
SORT - Sort input
START - membuka sebuah window baru, untuk menjalankan program atau command tertentu
SU - Switch User
SUBINACL - Edit file & folder Permissions, Ownership serta Domain
SUBST - Menyesuaikan sebuah path dengan drive letter
SYSTEMINFO - Menampilkan daftar system configuration
TASKLIST - Menampilkan daftar aplikasi dan service yang sedang berjalan
TIME - Menampilkan atau mengubah waktu pada system
TIMEOUT - Delay processing sebuah batch file
TITLE - Menentukan judul window untuk sebuah session CMD.EXE
TOUCH - mengubah timestamps sebuah file
TRACERT - Melacak route ke sebuah remote host
TREE - Tampilan grafis dari struktur folder
TYPE - Menampilkan isi dari sebuah text file
USRSTAT - Menampilkan daftar domain usernames dan last login
VER - Menampilkan version information
VERIFY - Memeriksa apakah files telah ter-save
VOL - Menampilkan disk label
WHERE - Mencari dan menampilkan files di dalam sebuah directory tree
WHOAMI - Menampilkan current UserName dan current domain
WINDIFF - Membandingkan isi dari dua atau lebih file.
WINMSD - Windows system diagnostics
WINMSDP - Windows system diagnostics II
WMIC - WMI Commands
XCACLS - Mengubah file permissions (hak akses)
XCOPY - Copy files dan folders

Asam Amino

Asam amino adalah sembarang senyawa organik yang memiliki gugus fungsional karboksil (-COOH) dan amina (biasanya -NH2). Dalam biokimia seringkali pengertiannya dipersempit: keduanya terikat pada satu atom karbon (C) yang sama (disebut atom C "alfa" atau α). Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa. Dalam bentuk larutan, asam amino bersifat amfoterik: cenderung menjadi asam pada larutan basa dan menjadi basa pada larutan asam. Perilaku ini terjadi karena asam amino mampu menjadi zwitter-ion. Asam amino termasuk golongan senyawa yang paling banyak dipelajari karena salah satu fungsinya sangat penting dalam organisme, yaitu sebagai penyusun protein.

Struktur asam amino

Struktur asam amino secara umum adalah satu atom C yang mengikat empat gugus: gugus amina (NH2), gugus karboksil (COOH), atom hidrogen (H), dan satu gugus sisa (R, dari residue) atau disebut juga gugus atau rantai samping yang membedakan satu asam amino dengan asam amino lainnya.

Atom C pusat tersebut dinamai atom Cα ("C-alfa") sesuai dengan penamaan senyawa bergugus karboksil, yaitu atom C yang berikatan langsung dengan gugus karboksil. Oleh karena gugus amina juga terikat pada atom Cα ini, senyawa tersebut merupakan asam α-amino.

Asam amino biasanya diklasifikasikan berdasarkan sifat kimia rantai samping tersebut menjadi empat kelompok. Rantai samping dapat membuat asam amino bersifat asam lemah, basa lemah, hidrofilik jika polar, dan hidrofobik jika nonpolar.

Struktur asam α-amino, dengan gugus amina di sebelah kiri dan gugus karboksil di sebelah kanan.

Isomerisme pada asam amino
Karena atom C pusat mengikat empat gugus yang berbeda, maka asam amino—kecuali glisina—memiliki isomer optik: l dan d. Cara sederhana untuk mengidentifikasi isomeri ini dari gambaran dua dimensi adalah dengan "mendorong" atom H ke belakang pembaca (menjauhi pembaca). Jika searah putaran jarum jam (putaran ke kanan) terjadi urutan karboksil-residu-amina maka ini adalah tipe d. Jika urutan ini terjadi dengan arah putaran berlawanan jarum jam, maka itu adalah tipe l. (Aturan ini dikenal dalam bahasa Inggris dengan nama CORN, dari singkatan COOH - R - NH2).

Pada umumnya, asam amino alami yang dihasilkan eukariota merupakan tipe l meskipun beberapa siput laut menghasilkan tipe d. Dinding sel bakteri banyak mengandung asam amino tipe d.

Dua model molekul isomer optis asam amino alanina

Polimerisasi asam amino
Protein merupakan polimer yang tersusun dari asam amino sebagai monomernya. Monomer-monomer ini tersambung dengan ikatan peptida, yang mengikat gugus karboksil milik satu monomer dengan gugus amina milik monomer di sebelahnya. Reaksi penyambungan ini (disebut translasi) secara alami terjadi di sitoplasma dengan bantuan ribosom dan tRNA.

Pada polimerisasi asam amino, gugus -OH yang merupakan bagian gugus karboksil satu asam amino dan gugus -H yang merupakan bagian gugus amina asam amino lainnya akan terlepas dan membentuk air. Oleh sebab itu, reaksi ini termasuk dalam reaksi dehidrasi. Molekul asam amino yang telah melepaskan molekul air dikatakan disebut dalam bentuk residu asam amino.

Reaksi kondensasi dua asam amino membentuk ikatan peptida

Zwitter-ion
Karena asam amino memiliki gugus aktif amina dan karboksil sekaligus, zat ini dapat dianggap sebagai sekaligus asam dan basa (walaupun pH alaminya biasanya dipengaruhi oleh gugus-R yang dimiliki). Pada pH tertentu yang disebut titik isolistrik, gugus amina pada asam amino menjadi bermuatan positif (terprotonasi, –NH3+), sedangkan gugus karboksilnya menjadi bermuatan negatif (terdeprotonasi, –COO-). Titik isolistrik ini spesifik bergantung pada jenis asam aminonya. Dalam keadaan demikian, asam amino tersebut dikatakan berbentuk zwitter-ion. Zwitter-ion dapat diekstrak dari larutan asam amino sebagai struktur kristal putih yang bertitik lebur tinggi karena sifat dipolarnya. Kebanyakan asam amino bebas berada dalam bentuk zwitter-ion pada pH netral maupun pH fisiologis yang dekat netral.

Asam amino dalam bentuk tidak terion (kiri) dan dalam bentuk zwitter-ion.


Asam amino dasar (standar)

Protein tersusun dari berbagai asam amino yang masing-masing dihubungkan dengan ikatan peptida. Meskipun demikian, pada awal pembentukannya protein hanya tersusun dari 20 asam amino yang dikenal sebagai asam amino dasar atau asam amino baku atau asam amino penyusun protein (proteinogenik). Asam-asam amino inilah yang disandi oleh DNA/RNA sebagai kode genetik.

Berikut adalah ke-20 asam amino penyusun protein (singkatan dalam kurung menunjukkan singkatan tiga huruf dan satu huruf yang sering digunakan dalam kajian protein), dikelompokkan menurut sifat atau struktur kimiawinya:
Asam amino alifatik sederhana
* Glisina (Gly, G)
* Alanina (Ala, A)
* Valina (Val, V)
* Leusina (Leu, L)
* Isoleusina (Ile, I)

Asam amino hidroksi-alifatik
* Serina (Ser, S)
* Treonina (Thr, T)

Asam amino dikarboksilat (asam)
* Asam aspartat (Asp, D)
* Asam glutamat (Glu, E)

Amida
* Asparagina (Asn, N)
* Glutamina (Gln, Q)

Asam amino basa
* Lisina (Lys, K)
* Arginina (Arg, R)
* Histidina (His, H) (memiliki gugus siklik)

Asam amino dengan sulfur
* Sisteina (Cys, C)
* Metionina (Met, M)

Prolin
* Prolina (Pro, P) (memiliki gugus siklik)
Asam amino aromatik
* Fenilalanina (Phe, F)
* Tirosina (Tyr, Y)
* Triptofan (Trp, W)

Kelompok ini memiliki cincin benzena dan menjadi bahan baku metabolit sekunder aromatik.

Fungsi biologi asam amino

1. Penyusun protein, termasuk enzim.
2. Kerangka dasar sejumlah senyawa penting dalam metabolisme (terutama vitamin, hormon dan asam nukleat).
3. Pengikat ion logam penting yang diperlukan dalam dalam reaksi enzimatik (kofaktor).

Asam amino esensial

Asam amino diperlukan oleh makhluk hidup sebagai penyusun protein atau sebagai kerangka molekul-molekul penting. Ia disebut esensial bagi suatu spesies organisme apabila spesies tersebut memerlukannya tetapi tidak mampu memproduksi sendiri atau selalu kekurangan asam amino yang bersangkutan. Untuk memenuhi kebutuhan ini, spesies itu harus memasoknya dari luar (lewat makanan). Istilah "asam amino esensial" berlaku hanya bagi organisme heterotrof.

Bagi manusia, ada delapan (ada yang menyebut sembilan) asam amino esensial yang harus dipenuhi dari diet sehari-hari, yaitu isoleusina, leusina, lisina, metionina, fenilalanina, treonina, triptofan, dan valina. Histidina dan arginina disebut sebagai "setengah esensial" karena tubuh manusia dewasa sehat mampu memenuhi kebutuhannya. Asam amino karnitina juga bersifat "setengah esensial" dan sering diberikan untuk kepentingan pengobatan.

Protein


Segelas susu sapi. Susu sapi merupakan salah satu sumber protein.
Protein (akar kata protos dari bahasa Yunani yang berarti "yang paling utama") adalah senyawa organik kompleks berbobot molekul tinggi yang merupakan polimer dari monomer-monomer asam amino yang dihubungkan satu sama lain dengan ikatan peptida. Molekul protein mengandung karbon, hidrogen, oksigen, nitrogen dan kadang kala sulfur serta fosfor. Protein berperan penting dalam struktur dan fungsi semua sel makhluk hidup dan virus.

Kebanyakan protein merupakan enzim atau subunit enzim. Jenis protein lain berperan dalam fungsi struktural atau mekanis, seperti misalnya protein yang membentuk batang dan sendi sitoskeleton. Protein terlibat dalam sistem kekebalan (imun) sebagai antibodi, sistem kendali dalam bentuk hormon, sebagai komponen penyimpanan (dalam biji) dan juga dalam transportasi hara. Sebagai salah satu sumber gizi, protein berperan sebagai sumber asam amino bagi organisme yang tidak mampu membentuk asam amino tersebut (heterotrof).

Protein merupakan salah satu dari biomolekul raksasa, selain polisakarida, lipid, dan polinukleotida, yang merupakan penyusun utama makhluk hidup. Selain itu, protein merupakan salah satu molekul yang paling banyak diteliti dalam biokimia. Protein ditemukan oleh Jöns Jakob Berzelius pada tahun 1838.

Biosintesis protein alami sama dengan ekspresi genetik. Kode genetik yang dibawa DNA ditranskripsi menjadi RNA, yang berperan sebagai cetakan bagi translasi yang dilakukan ribosom. Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi.

Struktur


Struktur tersier protein. Protein ini memiliki banyak struktur sekunder beta-sheet dan alpha-helix yang sangat pendek. Model dibuat dengan menggunakan koordinat dari Bank Data Protein (nomor 1EDH).
Struktur protein dapat dilihat sebagai hirarki, yaitu berupa struktur primer (tingkat satu), sekunder (tingkat dua), tersier (tingkat tiga), dan kuartener (tingkat empat). Struktur primer protein merupakan urutan asam amino penyusun protein yang dihubungkan melalui ikatan peptida (amida). Sementara itu, struktur sekunder protein adalah struktur tiga dimensi lokal dari berbagai rangkaian asam amino pada protein yang distabilkan oleh ikatan hidrogen. Berbagai bentuk struktur sekunder misalnya ialah sebagai berikut:

* alpha helix (α-helix, "puntiran-alfa"), berupa pilinan rantai asam-asam amino berbentuk seperti spiral;
* beta-sheet (β-sheet, "lempeng-beta"), berupa lembaran-lembaran lebar yang tersusun dari sejumlah rantai asam amino yang saling terikat melalui ikatan hidrogen atau ikatan tiol (S-H);
* beta-turn, (β-turn, "lekukan-beta"); dan
* gamma-turn, (γ-turn, "lekukan-gamma").

Gabungan dari aneka ragam dari struktur sekunder akan menghasilkan struktur tiga dimensi yang dinamakan struktur tersier. Struktur tersier biasanya berupa gumpalan. Beberapa molekul protein dapat berinteraksi secara fisik tanpa ikatan kovalen membentuk oligomer yang stabil (misalnya dimer, trimer, atau kuartomer) dan membentuk struktur kuartener. Contoh struktur kuartener yang terkenal adalah enzim Rubisco dan insulin.

Struktur primer protein bisa ditentukan dengan beberapa metode: (1) hidrolisis protein dengan asam kuat (misalnya, 6N HCl) dan kemudian komposisi asam amino ditentukan dengan instrumen amino acid analyzer, (2) analisis sekuens dari ujung-N dengan menggunakan degradasi Edman, (3) kombinasi dari digesti dengan tripsin dan spektrometri massa, dan (4) penentuan massa molekular dengan spektrometri massa.

Struktur sekunder bisa ditentukan dengan menggunakan spektroskopi circular dichroism (CD) dan Fourier Transform Infra Red (FTIR). Spektrum CD dari puntiran-alfa menunjukkan dua absorbans negatif pada 208 dan 220 nm dan lempeng-beta menunjukkan satu puncak negatif sekitar 210-216 nm. Estimasi dari komposisi struktur sekunder dari protein bisa dikalkulasi dari spektrum CD. Pada spektrum FTIR, pita amida-I dari puntiran-alfa berbeda dibandingkan dengan pita amida-I dari lempeng-beta. Jadi, komposisi struktur sekunder dari protein juga bisa diestimasi dari spektrum inframerah.

Struktur protein lainnya yang juga dikenal adalah domain. Struktur ini terdiri dari 40-350 asam amino. Protein sederhana umumnya hanya memiliki satu domain. Pada protein yang lebih kompleks, ada beberapa domain yang terlibat di dalamnya. Hubungan rantai polipeptida yang berperan di dalamnya akan menimbulkan sebuah fungsi baru berbeda dengan komponen penyusunnya. Bila struktur domain pada struktur kompleks ini berpisah, maka fungsi biologis masing-masing komponen domain penyusunnya tidak hilang. Inilah yang membedakan struktur domain dengan struktur kuartener. Pada struktur kuartener, setelah struktur kompleksnya berpisah, protein tersebut tidak fungsional.

Kekurangan Protein

Protein sendiri mempunyai banyak sekali fungsi di tubuh kita. Pada dasarnya protein menunjang keberadaan setiap sel tubuh, proses kekebalan tubuh. Setiap orang dewasa harus sedikitnya mengkonsumsi 1 g protein pro kg berat tubuhnya. Kebutuhan akan protein bertambah pada perempuan yang mengandung dan atlet-atlet.

Kekurangan Protein bisa berakibat fatal:

* Kerontokan rambut (Rambut terdiri dari 97-100% dari Protein -Keratin)
* Yang paling buruk ada yang disebut dengan Kwasiorkor, penyakit kekurangan protein. Biasanya pada anak-anak kecil yang menderitanya, dapat dilihat dari yang namanya busung lapar, yang disebabkan oleh filtrasi air di dalam pembuluh darah sehingga menimbulkan odem.Simptom yang lain dapat dikenali adalah:
o hipotonus
o gangguan pertumbuhan
o hati lemak
* Kekurangan yang terus menerus menyebabkan marasmus dan berkibat kematian.

Sintese protein

Dari makanan kita memperoleh Protein. Di sistem pencernaan protein akan diuraikan menjadi peptid peptid yang strukturnya lebih sederhana terdiri dari asam amino. Hal ini dilakukan dengan bantuan enzim. Tubuh manusia memerlukan 9 asam amino. Artinya kesembilan asam amino ini tidak dapat disintesa sendiri oleh tubuh esensiil, sedangkan sebagian asam amino dapat disintesa sendiri atau tidak esensiil oleh tubuh. Keseluruhan berjumlah 21 asam amino. Setelah penyerapan di usus maka akan diberikan ke darah. Darah membawa asam amino itu ke setiap sel tubuh. Kode untuk asam amino tidak esensiil dapat disintesa oleh DNA. Ini disebut dengan DNAtranskripsi. Kemudian mRNA hasil transkripsi di proses lebih lanjut di ribosom atau retikulum endoplasma, disebut sebagai translasi.
Sumber Protein
* Daging
* Ikan
* Telur
* Susu, dan produk sejenis Quark
* Tumbuhan berbji
* Suku polong-polongan
* Kentang
Studi dari Biokimiawan USA Thomas Osborne Lafayete Mendel, Profesor untuk biokimia di Yale, 1914, mengujicobakan protein konsumsi dari daging dan tumbuhan kepada kelinci. Satu grup kelinci-kelinci tersebut diberikan makanan protein hewani, sedangkan grup yang lain diberikan protein nabati. Dari eksperimennya didapati bahwa kelinci yang memperoleh protein hewani lebih cepat bertambah beratnya dari kelinci yang memperoleh protein nabati. Kemudian studi selanjutnya, oleh McCay dari Universitas Berkeley menunjukkan bahwa kelinci yang memperoleh protein nabati, lebih sehat dan hidup dua kali lebih lama.
Keuntungan Protein
* Sumber energi
* Pembetukan dan perbaikan sel dan jaringan
* Sebagai sintesis hormon,enzim, dan antibodi
* Pengatur keseimbangan kadar asam basa dalam sel

Methode Pembuktian Protein

* Tes UV-Absorbsi
* Reaksi Xanthoprotein
* Reaksi Millon
* Reaksi Ninhydrin
* Reaksi Biuret
* Reaksi Bradford
* Tes Protein berdasar Lowry
* Tes BCA-



Fotorespirasi

Fotorespirasi adalah sejenis respirasi pada tumbuhan yang dibangkitkan oleh penerimaan cahaya yang diterima oleh daun. Diketahui pula bahwa kebutuhan energi dan ketersediaan oksigen dalam sel juga mempengaruhi fotorespirasi. Walaupun menyerupai respirasi (pernafasan) biasa, yaitu proses oksidasi yang melibatkan oksigen, mekanisme respirasi karena rangsangan cahaya ini agak berbeda dan dianggap sebagai proses fisiologi tersendiri.

Proses Fotorespirasi

Proses yang disebut juga "asimilasi cahaya oksidatif" ini terjadi pada sel-sel mesofil daun dan diketahui merupakan gejala umum pada tumbuhan C3, seperti kedelai dan padi. Lebih jauh, proses ini hanya terjadi pada stroma dari kloroplas, dan didukung oleh peroksisom dan mitokondria.

Secara biokimia, proses fotorespirasi merupakan cabang dari jalur glikolat. Enzim utama yang terlibat adalah enzim yang sama dalam proses reaksi gelap fotosintesis, Rubisco (ribulosa-bifosfat karboksilase-oksigenase). Rubisco memiliki dua sisi aktif: sisi karboksilase yang aktif pada fotosintesis dan sisi oksigenase yang aktif pada fotorespirasi. Kedua proses yang terjadi pada stroma ini juga memerlukan substrat yang sama, ribulosa bifosfat (RuBP), dan juga dipengaruhi secara positif oleh konsentrasi ion Magnesium dan derajat keasaman (pH) sel. Dengan demikian fotorespirasi menjadi pesaing bagi fotosintesis, suatu kondisi yang tidak disukai kalangan pertanian, karena mengurangi akumulasi energi.

Jika kadar CO2 dalam sel rendah (misalnya karena meningkatnya penyinaran dan suhu sehingga laju produksi oksigen sangat tinggi dan stomata menutup), RuBP akan dipecah oleh Rubisco menjadi P-glikolat dan P-gliserat (dengan melibatkan satu molekul air menjadi glikolat dan P-OH). P-gliserat (P dibaca "fosfo") akan didefosforilasi oleh ADP sehingga membentuk ATP. P-glikolat memasuki proses agak rumit menuju peroksisoma, lalu mitokondria, lalu kembali ke peroksisoma untuk diubah menjadi serin, lalu gliserat. Gliserat masuk kembali ke kloroplas untuk diproses secara normal oleh siklus Calvin menjadi gliseraldehid-3-fosfat (G3P).

Kegunaan

Peran fotorespirasi diperdebatkan namun semua kalangan sepakat bahwa fotorespirasi merupakan penyia-nyiaan energi. Dari sisi evolusi, proses ini dianggap sebagai sisa-sisa ciri masa lampau (relik). Atmosfer pada masa lampau mengandung oksigen pada kadar yang rendah, sehingga fotorespirasi tidak terjadi seintensif seperti masa kini. Fotorespirasi dianggap bermanfaat karena menyediakan CO2 dan NH3 bebas untuk diasimilasi ulang, sehingga dianggap sebagai mekanisme daur ulang (efisiensi). Pendapat lain menyatakan bahwa fotorespirasi tidak memiliki fungsi fisiologis apa pun, baik sebagai penyedia asam amino tertentu (serin dan glisin) maupun sebagai pelindung klorofil dari perombakan karena fotooksidasi.

Karena tidak efisien, sejumlah tumbuhan mengembangkan mekanisme untuk mencegah fotorespirasi. Untuk menekan fotorespirasi, tumbuhan C4 mengembangkan strategi ruang dengan memisahkan jaringan yang melakukan reaksi terang (sel mesofil) dan reaksi gelap (sel selubung pembuluh, atau bundle sheath). Sel-sel mesofil tumbuhan C4 tidak memiliki Rubisco. Strategi yang diambil tumbuhan CAM bersifat waktu (temporal), yaitu memisahkan waktu untuk reaksi terang (pada saat penyinaran penuh) dan reaksi gelap (di malam hari).

Fotosintesis


Apa sih fotosintesis? Tentu banyak yang sudah tahu.Fotosintesis adalah suatu proses biokimia yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri untuk memproduksi energi terpakai (nutrisi) dengan memanfaatkan energi cahaya. Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan di bumi. Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi. Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof. Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi. Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang.

Fotosintesis pada tumbuhan

Tumbuhan bersifat autotrof. Autotrof artinya dapat mensintesis makanan langsung. dari senyawa anorganik. Tumbuhan menggunakan karbon dioksida dan air untuk menghasilkan gula dan oksigen yang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Perhatikan persamaan reaksi yang menghasilkan glukosa berikut ini:
6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2

Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar. Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan. Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas. Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia.

Tumbuhan menangkap cahaya menggunakan pigmen yang disebut klorofil. Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas. klorofil menyerap cahaya yang akan digunakan dalam fotosintesis. Meskipun seluruh bagian tubuh tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun. Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya. Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis. Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar matahari ataupun penguapan air yang berlebihan.

Fotosintesis pada alga dan bakteri

Alga terdiri dari alga multiseluler seperti ganggang hingga alga mikroskopik yang hanya terdiri dari satu sel. Meskipun alga tidak memiliki struktur sekompleks tumbuhan darat, fotosintesis pada keduanya terjadi dengan cara yang sama. Hanya saja karena alga memiliki berbagai jenis pigmen dalam kloroplasnya, maka panjang gelombang cahaya yang diserapnya pun lebih bervariasi. Semua alga menghasilkan oksigen dan kebanyakan bersifat autotrof. Hanya sebagian kecil saja yang bersifat heterotrof yang berarti bergantung pada materi yang dihasilkan oleh organisme lain

Proses fotosintesis

Hingga sekarang fotosintesis masih terus dipelajari karena masih ada sejumlah tahap yang belum bisa dijelaskan, meskipun sudah sangat banyak yang diketahui tentang proses vital ini. Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri.

Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun. Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan reaksi ini. Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma. Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.

Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).

Reaksi terang

Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.

Pigmen klorofil menyerap lebih banyak cahaya terlihat pada warna biru (400-450 nanometer) dan merah (650-700 nanometer) dibandingkan hijau (500-600 nanometer). Cahaya hijau ini akan dipantulkan dan ditangkap oleh mata kita sehingga menimbulkan sensasi bahwa daun berwarna hijau. Fotosintesis akan menghasilkan lebih banyak energi pada gelombang cahaya dengan panjang tertentu. Hal ini karena panjang gelombang yang pendek menyimpan lebih banyak energi.

Di dalam daun, cahaya akan diserap oleh molekul klorofil untuk dikumpulkan pada pusat-pusat reaksi. Tumbuhan memiliki dua jenis pigmen yang berfungsi aktif sebagai pusat reaksi atau fotosistem yaitu fotosistem II dan fotosistem I. Fotosistem II terdiri dari molekul klorofil yang menyerap cahaya dengan panjang gelombang 680 nanometer, sedangkan fotosistem I 700 nanometer. Kedua fotosistem ini akan bekerja secara simultan dalam fotosintesis, seperti dua baterai dalam senter yang bekerja saling memperkuat.

Fotosintesis dimulai ketika cahaya mengionisasi molekul klorofil pada fotosistem II, membuatnya melepaskan elektron yang akan ditransfer sepanjang rantai transpor elektron. Energi dari elektron ini digunakan untuk fotofosforilasi yang menghasilkan ATP, satuan pertukaran energi dalam sel. Reaksi ini menyebabkan fotosistem II mengalami defisit atau kekurangan elektron yang harus segera diganti. Pada tumbuhan dan alga, kekurangan elektron ini dipenuhi oleh elektron dari hasil ionisasi air yang terjadi bersamaan dengan ionisasi klorofil. Hasil ionisasi air ini adalah elektron dan oksigen.

Oksigen dari proses fotosintesis hanya dihasilkan dari air, bukan dari karbon dioksida. Pendapat ini pertama kali diungkapkan oleh C.B. van Neil yang mempelajari bakteri fotosintetik pada tahun 1930-an. Bakteri fotosintetik, selain sianobakteri, menggunakan tidak menghasilkan oksigen karena menggunakan ionisasi sulfida atau hidrogen.

Pada saat yang sama dengan ionisasi fotosistem II, cahaya juga mengionisasi fotosistem I, melepaskan elektron yang ditransfer sepanjang rantai transpor elektron yang akhirnya mereduksi NADP menjadi NADPH.

Reaksi gelap

ATP dan NADPH yang dihasilkan dalam proses fotosintesis memicu berbagai proses biokimia. Pada tumbuhan proses biokimia yang terpicu adalah siklus Calvin yang mengikat karbon dioksida untuk membentuk ribulosa (dan kemudian menjadi gula seperti glukosa). Reaksi ini disebut reaksi gelap karena tidak bergantung pada ada tidaknya cahaya sehingga dapat terjadi meskipun dalam keadaan gelap (tanpa cahaya).

Faktor penentu laju fotosintesis

Berikut adalah beberapa faktor utama yang menentukan laju fotosintesis:
  1. Intensitas cahaya
    Laju fotosintesis maksimum ketika banyak cahaya.
  2. Konsentrasi karbon dioksida
    Semakin banyak karbon dioksida di udara, makin banyak jumlah bahan yang dapt digunakan tumbuhan untuk melangsungkan fotosintesis.
  3. Suhu
    Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga batas toleransi enzim.
  4. Kadar air
    Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.
  5. Kadar fotosintat (hasil fotosintesis)
    Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju fotosintesis akan berkurang.
  6. Tahap pertumbuhan
    Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi dan makanan untuk tumbuh.


Penemuan

Meskipun masih ada langkah-langkah dalam fotosintesis yang belum dipahami, persamaan umum fotosintesis telah diketahui sejak tahun 1800-an.

Pada awal tahun 1600-an, seorang dokter dan ahli kimia, Jan van Helmont, seorang Flandria (sekarang bagian dari Belgia), melakukan percobaan untuk mengetahui faktor apa yang menyebabkan massa tumbuhan bertambah dari waktu ke waktu. Dari penelitiannya, Helmont menyimpulkan bahwa massa tumbuhan bertambah hanya karena pemberian air. Tapi pada tahun 1720, ahli botani Inggris, Stephen Hales berhipotesis bahwa pasti ada faktor lain selain air yang berperan. Ia berpendapat faktor itu adalah udara.

Joseph Priestley, seorang ahli kimia dan pendeta, menemukan bahwa ketika ia menutup sebuah lilin menyala dengan sebuah toples terbalik, nyalanya akan mati sebelum lilinnya habis terbakar. Ia kemudian menemukan bila ia meletakkan tikus dalam toples terbalik bersama lilin, tikus itu akan mati lemas. Dari kedua percobaan itu, Priestley menyimpulkan bahwa nyala lilin telah "merusak" udara dalam toples itu dan menyebabkan matinya tikus. Ia kemudian menunjukkan bahwa udara yang telah “dirusak” oleh lilin tersebut dapat “dipulihkan” oleh tumbuhan. Ia juga menunjukkan bahwa tikus dapat tetap hidup dalam toples tertutup asalkan di dalamnya juga terdapat tumbuhan.

Pada tahun 1778, Jan Ingenhousz, dokter kerajaan Austria, mengulangi eksperimen Priestley. Ia menemukan bahwa cahaya matahari berpengaruh pada tumbuhan sehingga dapat "memulihkan" udara yang "rusak".

Akhirnya di tahun 1796, Jean Senebier, seorang pastor Perancis, menunjukkan bahwa udara yang “dipulihkan” dan “merusak” itu adalah karbon dioksida yang diserap oleh tumbuhan dalam fotosintesis. Tidak lama kemudian, Theodore de Saussure berhasil menunjukkan hubungan antara hipotesis Stephen Hale dengan percobaan-percobaan "pemulihan" udara. Ia menemukan bahwa peningkatan massa tumbuhan bukan hanya karena penyerapan karbon dioksida, tetapi juga oleh pemberian air. Melalui serangkaian eksperimen inilah akhirnya para ahli berhasil menggambarkan persamaan umum dari fotosintesis yang menghasilkan makanan (seperti glukosa).

All